
Missouri Law Review Missouri Law Review

Volume 76
Issue 3 Summer 2011 Article 8

Summer 2011

Patent Law's Unpredictability Doctrine and the Software Arts Patent Law's Unpredictability Doctrine and the Software Arts

Greg R. Vetter

Follow this and additional works at: https://scholarship.law.missouri.edu/mlr

 Part of the Law Commons

Recommended Citation Recommended Citation
Greg R. Vetter, Patent Law's Unpredictability Doctrine and the Software Arts, 76 MO. L. REV. (2011)
Available at: https://scholarship.law.missouri.edu/mlr/vol76/iss3/8

This Conference is brought to you for free and open access by the Law Journals at University of Missouri School of
Law Scholarship Repository. It has been accepted for inclusion in Missouri Law Review by an authorized editor of
University of Missouri School of Law Scholarship Repository. For more information, please contact
bassettcw@missouri.edu.

https://scholarship.law.missouri.edu/mlr
https://scholarship.law.missouri.edu/mlr/vol76
https://scholarship.law.missouri.edu/mlr/vol76/iss3
https://scholarship.law.missouri.edu/mlr/vol76/iss3/8
https://scholarship.law.missouri.edu/mlr?utm_source=scholarship.law.missouri.edu%2Fmlr%2Fvol76%2Fiss3%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/578?utm_source=scholarship.law.missouri.edu%2Fmlr%2Fvol76%2Fiss3%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bassettcw@missouri.edu

Patent Law's Unpredictability Doctrine and
the Software Arts

Greg R. Vetter*

TABLE OF CONTENTS
I. INTRODUCTION 764
II. EFFORT CURVES IN TECHNOLOGY DEVELOPMENT 767

A. The Norden Model................ 767
B. Prototype in Light ofDesign 769
C. Product in Light ofPrototype..... 773

III. PATENT DISCLOSURE & UNPREDICTABILITY 774
A. Disclosure and the Software Arts 775

1. Enablement .. 777
2. Best Mode .. 790
3. Claim-Defining Disclosure Doctrines............. 793

a. Written Description 793
b. Definiteness 796
c. Means-Plus-Function (§ 112 1 6) Claim Limitations.............. 797

B. The Unpredictable Technology Doctrine 799
IV. AN UNPREDICTABILITY DOCTRINE FOR THE SOFTWARE ARTS?....... 802

A. Unpredictability and Software 803
B. Enablement 806

V. CONCLUSION 812

* Associate Professor of Law, University of Houston Law Center; Co-Director,
Institute for Intellectual Property and Information Law; biography available at:
www.law.uh.edu/faculty/gvetter. My background includes a Master's degree in
Computer Science and nine years full-time work experience in the software industry.
My thanks to Seth Cockrum and Craig Walter for excellent research assistance. For
helpful comments and discussion, I thank Chris Holman, Dennis Crouch, Jeanne
Fromer, Kathy Strandburg, Mark Lemley, Lisa Dolak, Lee Petherbridge, and
participants at these events: The Center for Intellectual Property Law and Information
Technology (CIPLIT) 9 th Annual CIPLIT Symposium; Cyberlaw 2.0: Legal
Challenges of an Evolving Internet, at the Depaul University College of Law; The
2010 Intellectual Property Scholars Roundtable, by the Intellectual Property Law
Center at the DRAKE UNIVERSITY LAW SCHOOL; The 2011 Works-in-Progress
Intellectual Property (WIPIP) Colloquium, at BOSTON UNIVERSITY SCHOOL OF LAW;
and The Missouri Law Review 2011 Symposium: Evolving the Court of Appeals for
the Federal Circuit and its Patent Law Jurisprudence, at the UNIVERSITY OF
MISSOURI SCHOOL OF LAW.

1

Vetter: Vetter: Patent Law's Unpredictability Doctrine

Published by University of Missouri School of Law Scholarship Repository, 2011

MISSOURI LAW REVIEW

TABLE OF FIGURES
Figure 1 - Norden Effort Curve Model for R & D Projects... 768
Figure 2 - Enablement and the Norden Model...................... 782
Figure 3 - Enablement Effort Components Under the Norden Model..........783
Figure 4 - Software Block Diagram Fig. 9 of the '257 patent -
Method for Scheduling Access to Video Programs 787
Figure 5 - Best Mode and the Norden Model........... 791
Figure 6 - Fig. I of the '375 patent - Data Entry Terminal 810

1. INTRODUCTION

For software patents, much of the influence on the enablement doctrine
and its undue experimentation proviso, including the important "unpredicta-
ble technology" factor for the proviso, arises from cases where the software
technology at issue is now many decades old. For example, in the important
software enablement case of Northern Telecom, Inc. v. Datapoint Corp.,' the

original filing date of the claims for a data entry terminal was in 1971.2 The
terminal used software to operate, thus raising the question whether the patent
gave sufficient information to allow an artisan to make and use the disclosed
technology without undue experimentation, given that the source code was
not disclosed. The software was tied closely to the hardware, partly because
its purpose was to give the terminal its functionality, and partly because soft-
ware ran closer to the hardware in the early 1970s than it does today.4 The
more the software of the 1970s ran close to the hardware, the more it might
have made sense to develop a jurisprudence categorizing software as a pre-
dictable technology, akin to many areas of electrical engineering. But soft-
ware and the law relating to software patents have changed dramatically since
the 1970s.5

Using a particular model of research and development, in light of the in-
sights above, this Article argues that the unpredictable technology doctrine
should not be applied categorically. The insights of the model suggest this
conclusion generally, but the article treats software as an example of the is-
sue.

The model postulates phases for a research and development project and
then presents curves representing the learning effort typically observed under

1. 908 F.2d 931 (Fed. Cir. 1990).
2. U.S. Patent No. 3,760,375 (filed July 1, 1971).
3. N. Telecom, 908 F.2d at 941-43.
4. See Christine E. Reinhard, Tangible or Intangible - Is That the Question?

Conflict in the Texas Tax Classification System of Computer Software, 29 ST. MARY'S
L.J. 871, 875-76 (1998).

5. Thomas P. Burke, Software Patent Protection: Debugging the Current
System, 69 NOTRE DAME L. REV. 1115, 1128 (1994).

[Vol. 76764

2

Missouri Law Review, Vol. 76, Iss. 3 [2011], Art. 8

https://scholarship.law.missouri.edu/mlr/vol76/iss3/8

UNPREDICTABILITY AND THE SOFTWARE ARTS

6each phase. Developed by Peter Norden, an IBM researcher, the model re-
mains influential in software development as a theoretical basis for software
project cost estimating.7 This Article refers to the model as the Norden mod-
el, using a stylized presentation of the model from a software engineering
textbook.8 The phases are planning, design, prototype, product, and modifi-
cation.9 The last phase, modification, is not used in this Article's application
of the model.

In the Norden model, enablement is a relationship between the design
and prototype effort curves. The research and development team will transi-
tion from the design phase to the prototype phase. Information transference
will be comparatively efficient, assuming continuity for the research team.
How difficult it is to build the prototype will depend in part on the quality of
the design, and in part on the then-present character of the technology niche
at which the research is aimed. Further, the current state of knowledge about
the technology influences the success of design and prototyping. For success-
ful research and development, the team works through the phases in a pro-
gressive fashion.

To map this pattern to enablement, the design information corresponds
to the disclosure given in a patent instrument. The prototype is the effort of
an artisan to make and use the invention. But a patent introduces an infor-
mation discontinuity. Not only is the patent-reading artisan not an original
developer, the nature of the patent instrument obfuscates the disclosure. o
Legal doctrines in patent law that measure the sufficiency of disclosure are
important to account for the information discontinuity.

Information is a substitute for learning effort. The patent-reading artisan
was not part of the invention development team, but need not expend the
effort under the design phase, because she can obtain the benefit of that effort
from the disclosed design information.

Enablement, then, under the Norden model, focuses on the interrelation-
ship between the design and prototype phases. If the effort to build the proto-
type is so great as to be undue, given design information disclosed in a patent,
then the claim is not enabled. Norden modeled each phase of the research

6. Peter V. Norden, Curve Fitting for a Model of Applied Research and
Development Scheduling, 2 IBM J. RES. & DEV. 232, 232, 233, 236 (1958)
[hereinafter Norden, Model] (noting that the "study investigates broad, stable patterns
and relationships in the R & D process, so as to provide a basis for at least limited
improvement in forecasting accuracy").

7. See RICHARD E. FAIRLEY, SOFTWARE ENGINEERING CONCEPTS 79-80 (1985).
8. Id.
9. See id at 79.

10. See Sean B. Seymore, The Teaching Function ofPatents, 85 NOTRE DAME L.
REV. 621, 632-41 (2010) [hereinafter Seymore, Teaching Function] (discussing the
reasons patents instruments are written in "patentese"); see also Jeanne C. Fromer,
Patent Disclosure, 94 IOWA L. REV. 539, 566-69 (2009); Gideon Parchomovsky &
Michael Mattioli, Partial Patents, 111 COLUM. L. REV. 207, 209, 229-32 (2011).

2011] 765

3

Vetter: Vetter: Patent Law's Unpredictability Doctrine

Published by University of Missouri School of Law Scholarship Repository, 2011

MTSSOURILA WREVIEW

and development project with an effort curve, where effort rose, peaked, and
then fell. The curves for the phases overlap.12 Thus, a very high and wide
prototype curve, representing great effort over a long time, suggests a claim
that is not enabled because the design information was insufficient. Great
effort, or quantitatively large effort, is not necessarily undue experimentation
because that rubric includes qualitative assessments, but the quantitative as-
pects of enablement correspond with the Norden model.

The model also fits well with other patent law doctrines, most notably
the best mode disclosure doctrine.'3 It also helps explain the doctrines that
eliminate the patentee's disclosure burden for information related to manufac-
turing the invention at scale or efficiently. In Norden model terms, these
doctrines say that information represented by the effort under the product
phase is not information that patent law obligates for disclosure, unless the
claims map to that space and/or a best mode is present in that space.

Part 11 reviews these insights from the Norden model generally. Part III
brings these insights to the disclosure doctrines for software patents, with
particular emphasis on the unpredictability factor for undue experimentation
within enablement. The model corresponds well with enablement and best
mode but does not correspond as well with other disclosure-prompting doc-
trines whose role is related to defining the claim. Thus, the review in Part III
of written description, definiteness, and means-plus-function (§ 112 T 6) claim
limitations helps establish the contours of applicability for the Norden model.

The discussion of Part III also reviews the current state of the law for
software patent disclosure: disclosure burdens are light and do not require
disclosure of source code for the software. Thus, software patents may repre-
sent the high-water technology in patent law for having your cake and eating
it too: trade secrecy protection attaches if the licensing and distribution of the
software is according to proprietary licensing: distribution of object code,
keeping source code secret. Within this review of software patent disclosure
law, the Article contrasts the continuum of possible disclosure modes with the
Norden model and patent law's current requirements.

Part IV then completes the article by arguing for a change to one of the
requirements: reducing the categorical approach to unpredictability in the
software arts. All of software should not be deemed predictable. Many nich-
es are, but some are not.

Unpredictability is one of eight Wands factors that define undue exper-
imentation,14 but it is particularly important among the factors. Technologi-
cally, Part IV explains potential sources for unpredictable or unreliable be-
havior in software systems. Pragmatically, the progression of software tech-

11. FAIRLEY, supra note 7, at 79-80.
12. Id.
13. See infra notes 45, 230 and accompanying text (applying the model,

respectively, to conception and obviousness).
14. In re Wands, 858 F.2d 731, 737 (Fed. Cir. 1988).

766 [Vol. 76

4

Missouri Law Review, Vol. 76, Iss. 3 [2011], Art. 8

https://scholarship.law.missouri.edu/mlr/vol76/iss3/8

UNPREDICTABILITY AND THE SOFTWARE ARTS

nology since the time of the precedent influencing enablement for software
patents suggests a failure by the law to recognize the changes in the technolo-
gy. Moreover, the disclosure doctrines in software patents have not respond-
ed to the expansion of patentable subject matter in the area of software pa-
tents. The discussion also helps show that patent law does not necessarily
specify what it means by unpredictability, whether the unpredictable arts doc-
trine only attaches to ungovernable or inestimable items in nature or based on
natural principles. Software is different as a discipline because it processes
encoded information, where the encoding is derived from human thought.
For some, this processing would not fit within a definition of what is "na-
ture." Regardless, the Norden model suggests that an effort-based perspec-
tive on disclosure brings notions of unpredictability into the software arts in a
nuanced and niche-specific manner.

II. EFFORT CURVES IN TECHNOLOGY DEVELOPMENT

That new technology develops in phases is familiar. The phases have
common concepts: a design phase, a build phase, and perhaps a commerciali-
zation phase. Also familiar is that the phases overlap. Consider software
development. Much of the public understands that a beta test version of a
software product is somewhere between the build and commercialization
phase. A variety of labels might apply for the phases of technology develop-
ment.15 This Part presents a model for the phases of effort within a research
and development project. Although the model originates from a 1958 arti-
cle,' 6 the model remains influential in software engineering, particularly in
the area of estimating the human effort and associated cost to develop soft-
ware.17

A. The Norden Model

Peter V. Norden spent his career in technology management, much of it
with IBM, and "for more than forty years he was involved in research and
development management and design and development in manufacturing and
related industries.,s He studied the staffing patterns of research and devel-

15. See Ted Sichelman, Commercializing Patents, 62 STAN. L. REV. 341, 347-54
(2010) (discussing steps within the innovation process).

16. See Norden, Model, supra note 6.
17. FAIRLEY, supra note 7, at 79-80.
18. Peter V. Norden, INST. FOR OPERATIONS RES. AND THE MGMT. SCI.

(INFORMS), http://www.informs.org/About-INFORMS/History-and-Traditions/
Miser-Harris-Presidential-Portrait-Gallery/Peter-V.-Norden (last visited May 6,
2011).

2011] 767

5

Vetter: Vetter: Patent Law's Unpredictability Doctrine

Published by University of Missouri School of Law Scholarship Repository, 2011

UNPREDICTABILITY AND THE SOFTWARE ARTS

in broad categorical sweeps, the more it truncates the inquiry as to whether
experimentation is undue.192

The challenges in adjudicating patent infringement actions are numer-
ous. Thus, resorting to categorical approaches is understandable, even if
non-optimal.93 The unpredictable technology shortcut also shows up in ob-
viousness.194 Its appearance there, like in enablement, is related to the
PHOSITA.

aggregated Factor23]. aFactor23 is subsumed in Norden model curve B, the design
information.

Similarly, factors (5) and (6) can be aggregated: state of the prior art, and
skill of artisans [hereinafter, aFactor56]. aFactor56 does not rest with any particular
Norden curve, but underlies them all since the effort is being made by a PHOSITA in
all curves.

Continuing, factors (4) and (8) can be aggregated: nature of the invention and
breadth of the claims [hereinafter aFactor48]. Like unpredictability (the 7th factor),
aFactor48 is subsumed into Norden curve C, effort to build the prototype.

What remains is the first factor, quantity of experimentation, at which the
"undue experimentation" proviso partly aims. In other words, the first factor can be
understood as a hypothetical estimate of the situation at the time of filing: was that
quantity undue with PHOSITA knowledge then? Evaluating that question through the
Norden model places aFactor23 in the design curve, and places aFactor48 and
unpredictability in the prototype learning effort curve. The work under each curve is
done by a baseline artisan of aFactor56.

192. Consider this thought-experiment about the truncating effect of a categorical
approach to unpredictability. The first approach is the ESTdiscipline approach, where
the term "ESTdiscipline" stands for any degree commonly granted by most U.S.
universities somewhere within engineering, science and technology. Assume that
there are about four dozen such degrees, including, for example "Electrical
Engineering" or "Network Communications." (Please forget, for this thought-
experiment, that patents issue for areas outside the domains of ESTdiscipline.) The
second approach is to use the U.S. PTO class system, of which there are about 550.
Classes Arranged in Alphabetical Order, U.S. PAT. & TRADEMARK OFFICE
(Dec. 2010), http://www.uspto.gov/patents/resources/classification/caa.pdf. The more
granular taxonomy, the PTO class system, will have greater sensitivity to
predictability in a particular niche area of technology. The focus on a more granular
approach will suggest to the decisionmaking process, particularly before judges, to
not use broad categorical assessments. The thought-experiment concludes with a real
fact: the PTO's model for generating the taxonomy that is its class system is an
approach that itself considers complexity of the technology, which is a factor that is
often, under systems theory, linked to predictability. Appendix A - Structure of the
Modern Schedule, U.S. PAT. & TRADEMARK OFFICE, http://www.uspto.gov/patents/
resources/classificationthandbook/appxa.jsp (last visited May 24, 2011).

193. Arti K. Rai, Engaging Facts and Policy: A Multi-Institutional Approach to
Patent System Reform, 103 COLUM. L. REv. 1035, 1040 (2003) ("[Tlrial judges, and
the juries empanelled by trial judges, may be overwhelmed by the technology
involved in patent cases.").

194. KSR Int'l Co. v. Teleflex, Inc., 550 U.S. 398, 421 (2007) (predictable
solutions in the prior art weight in favor of a finding of obviousness).

2011] 801

39

Vetter: Vetter: Patent Law's Unpredictability Doctrine

Published by University of Missouri School of Law Scholarship Repository, 2011

A0lSSOURI LAW REVIEW

Professor Seymore contrasts the enablement PHOSITA with the obvi-
ousness PHOSITA: the former has been a plodder, but after KSR Int'l Co. v.
Teleflex Inc., the obviousness PHOSITA is more potent.'95 He posits that
"[p]ossibly as a result of KSR, however, the Federal Circuit has started to
police enablement more carefully in the predictable arts."' 96 Thus, Professor
Seymore's analysis proposes an effect of the unpredictable technology doc-
trine in a different doctrinal area than the obviousness doctrine at the center
of KSR. To the extent that assessment of unpredictability is nuanced to a
subfield within a technology and sensitive to advancement of knowledge
within that subfield, the rubric makes better sense for either enablement or
obviousness. To the extent it ossifies doctrine to facts from a technological
past that are no longer salient, the doctrine may be less than fully benefi-
cial.' 97

IV. AN UNPREDICTABILITY DOCTRINE FOR THE SOFTWARE ARTS?

At each phase of the Norden model, the sources of unpredictability will
vary, but tie to common issues of information deficit such as insufficient data
sets or theoretical models, or lack of both, such that reliable extrapolations
cannot be made; or tools and techniques that are themselves of only partial
and perhaps intermittent efficacy.'98 Enablement, from the Norden model
perspective, is making and using a prototype from the design information.
Understanding the unpredictability influence on the undue experimentation
part of enablement in terms of the Norden model suggests a more flexible
approach reducing categorical conclusions. The flexible approach is apropos
to a technological area as broad as one labeled "software" or "information
technology." The expansive breadth of either term as a category belies char-
acterizing the entire field as unpredictable or not in a binary fashion. This
conclusion is doubly true given the quick rate of technological advancement
in information technology since the inception of the electronic computer.
Professor Durham also speaks to these themes:

195. Seymore, Enablement, supra note 26, at 132-36.
196. Id. at 137. See also Lefstin, supra note 76, at 1175-81 (noting a recent

doctrinal shift in some situations where the Federal Circuit has required "full scope"
enablement, and discussing conceptual issues with that nascent doctrine). The KSR
PHOSITA conception has influenced the law of definiteness for software patents. See
AllVoice Computing PLC v. Nuance Commc'ns, Inc., 504 F.3d 1236, 1242, 1245
(Fed. Cir. 2007) ("In software cases, therefore, algorithms in the specification need
only disclose adequate defining structure to render the bounds of the claim
understandable to one of ordinary skill in the art.").

197. Feldman, supra note 49, at 58-68, 104.
198. The information deficit issues will likely vary in character under each curve

in the Norden model. Thus, the sources of unpredictability will vary from curve to
curve.

802 [Vol. 76

40

Missouri Law Review, Vol. 76, Iss. 3 [2011], Art. 8

https://scholarship.law.missouri.edu/mlr/vol76/iss3/8

UNPREDICTABILITY AND THE SOFTWARE ARTS

This distinction between the "predictable" and "unpredictable" arts
strikes some as unsatisfactory. If a claim in the mechanical arts
can be considered enabled even though it encompasses embodi-
ments that are "inadequately disclosed" in the specification, of
what use is the "predictability"' of the art? Is it true that mechani-
cal contrivances are invariably more "predictable" than chemistry?
Where do new arts, such as that of computer programming, fall?
However, at least until the Federal Circuit or the Supreme Court
decides to reexamine this issue, broad claims will be more readily
tolerated in the mechanical and electrical arts than in the arts of
chemistry and biotechnology.1 99

A. Unpredictability and Software

While the courts have analogized software, computer programming, and
other aspects of information technology as similar in predictability to the
discipline of creating circuits in electrical engineering; the software industry,
or at least its academy, sometimes takes the opposite view.200

A theme for "software engineering," as a discipline, is to make software
development more like engineering.201 The conventional wisdom is that
software projects, compared to common activities within electrical or me-
chanical engineering, frequently have greater risk of cost overruns and failure
to implement all designed functionality. 202 Translating this project risk to

199. DURHAM, supra note 36, at 72 (internal citation omitted).
200. Jackson, supra note 102, at 78, 80-87.

Perhaps in the future we will know enough about software-development
practices that the very use of a particular technique will constitute evi-
dence of the resulting software's quality. Today, however, we are far
from that goal.

Actually, where data is collected, it is often suppressed; many companies
withhold even basic information about the number and severity of defects
in their products, even when issuing patches that purport to resolve them.

[C]ertified systems sometimes fail catastrophically.

Contrary to the intuition of many programmers, finding bugs should not
increase confidence that fewer bugs remain; indeed, it is evidence that
there are more bugs to be found.

Id. at 79-80. See also Jim Humelsine, Letter to the Editor, Software Still as Much an
Art as Science, COMM. ACM, Jan. 2010, at 7.

201. James Larus & Galen Hunt, The Singularity System, COMM. ACS, Aug.
2010, at 72 ("The Singularity Project at Microsoft Research began by asking what
modern operating-system and application software would look like if it were designed
with modem software-engineering practices and tools.").

202. Jackson, supra note 102, at 79-81.

2011] 803

41

Vetter: Vetter: Patent Law's Unpredictability Doctrine

Published by University of Missouri School of Law Scholarship Repository, 2011

MISSOURI LAW REVIEW

Norden model terms, the information generated in the design and prototyping
phases does not allow for product implementation according to what is called
for in the design. This dynamic also is present between the design and proto-
type phases because an insufficient design can impede successful prototyping.
As conventional wisdom, this "not-quite-engineering" aspect of software
development is changing and applies to varying degrees depending on the
niche within information technology for which the code is developed. 2 03

There are niches where developers make software as reliably as some activi-
ties in other engineering disciplines. There are software niches where the
opposite is true.

The "not-quite-engineering" phenomenon has had an impact on imple-
menting software projects. These implementations may express as software
products or as software a company runs internally.20 Both of these are most-
ly effort under curve D, the product curve, in the Norden model. As such,
unpredictability that influences this effort is not related to enablement as a
matter of patent law doctrine.

However, to the extent delays, cost overruns, or failures to implement
functionality, that occur under product curve D, are related to a poor proto-
type, the analysis encroaches on enablement. To the extent these proto-
type-building problems are related to unpredictable aspects of some niche
ecology within information technology, the undue experimentation proviso of
enablement can be implicated.

This section will end with a brief review of some of the potential gen-
erators of unpredictability within software ecologies. The presentation is
general and means to emphasize the heterogeneous nature of the information
technology ecology. The sources generating unpredictability could influence
prototyping as well as product implementation. The prototype/product di-
chotomy is important to keep in view because it delineates where enablement

applies.205 The more these sources of unpredictability mostly or exclusively

203. Michael J. Lutz & Donald Bagert, Software Engineering Curriculum
Development, IEEE SOFTWARE, Nov.-Dec. 2006, at 16, 16-17. Some aspects of
software engineering or computer science (not necessarily fully overlapping fields)
are highly mathematical, especially in the areas where software languages and tools
are designed for others to use to build software. See Dennis de Champeaux, Software
Engineering Considered Harmful, COMM. ACS, Nov. 2002, at 102, 102-03. See also
Andrew Chin, Computational Complexity and the Scope of Software Patents, 39
JURIMETRICS J. 17, 20-24 (1998) (proposing standards by which algorithm analysis
for a claimed method would impact the claim's infringement potency).

204. See Jay P. Kesan & Rajiv C. Shah, Deconstructing Code, 6 YALE J.L. &
TECH. 277, 277 (2004) (discussing software development within various
organizations).

205. See HARMON, supra note 41, at 199-200 (explaining that patents need not be
production documents to be enabled). Sources of unpredictability that arise under the
product curve in the Norden model are not relevant to enablement if they do not also
arise under the prototype curve. For example, the common problem of malware
attacks on computers and computer software would likely be an issue that falls under

804 [Vol. 76

42

Missouri Law Review, Vol. 76, Iss. 3 [2011], Art. 8

https://scholarship.law.missouri.edu/mlr/vol76/iss3/8

UNPREDICTABILITY AND THE SOFTWARE ARTS

attach to the product implementation phase, the less they implicate undue
experimentation for a software patent. That dynamic works in reverse. To
catalog these sources, a loose taxonomy will help order the presentation:
layers and components.

Software runs on a hardware layer, with increasingly gray area at the in-
terface, and software is typically multi-layered. The hardware layer can be a
source of unpredictability in making and using a software invention, but this
result has become less likely as technology progressed over the last several
decades. A software layer might be made of various components. In choos-
ing the term component, the goal is to encompass a variety of software mech-
anisms, such as software objects, classes of objects, modules, languages,

206
messaging mechanisms, procedures, subroutines, and other similar items.
In other words, component is used in this article as an umbrella phrase with-
out the assertion that it has that umbrella meaning throughout all of infor-
mation technology.

If a software layer is made of components, then interactions between
layers, or among the components in a layer, as well as fragility within any
particular component, are potential sources of unpredictable behavior. One of
the most important insights for software unpredictability from the layers tax-
onomy is that almost all software runs on top of other software. The only
software that does not is software that runs on whatever stands for "hard-
ware" within a particular niche within computing.207

At some level of abstraction, all software responds to and manipulates
encoded information. Therefore, the idiom "lost in translation" can apply
between components. A decent analogy is the meaning transference, or lack
thereof, of two persons conversing, where one speaks the English language
and the other speaks French. The interactions between these two persons are
influenced in part by their ability to transfer meaning when neither speaks the
other's language, or each only speaks the other's language poorly. Similarly
software components can interact perfectly, well, or not at all, due to the in-

the product curve in the Norden model (unless the claims were for an anti-malware
invention). As such, the malware problem, to the extent it introduces unpredictability
into a software ecology, would be unlikely to be the type of unpredictability to count
for undue experimentation. See generally Richard Warner & Robert H. Sloan,
Vulnerable Software: Product-Risk Norms and the Problem of Unauthorized Access
(Mar. 7, 2011), available at http://ssrn.com/abstract-1780280 (discussing ways in
which software has vulnerabilities and relating those risks to tort law concepts).

206. Lipton, supra note 99, at 224-28 (discussing some of the components in the
list).

207. Many software failures or unreliable behavior are often traceable to hardware
failures or incorrect inputs, a concept within computing often called "garbage in,
garbage out." See generally Frances E. Zollers et al., No More Soft Landings for
Software: Liability for Defects in an Industry that Has Come of Age, 21 SANTA
CLARA COMPUTER & HIGH TECH. L.J. 745, 746-67 (2005).

2011] 805

43

Vetter: Vetter: Patent Law's Unpredictability Doctrine

Published by University of Missouri School of Law Scholarship Repository, 2011

MSSOURILA WREVIEW

formation encodings they are designed to recognize and how well the compo-
nents recognize them. 208

Classically, the first layer above the hardware is thought to be the oper-
ating system.209 A computer operating system, such as Micosoft Windows or
the Linux kernel, is a collection of components. Any of these components
might themselves be fragile, to the point that building a rickety prototype
depending on that component is an exercise in frustration for a programmer.
Alternatively, a prototype might need to use several components in the oper-
ating system, each of which is robust, but whose interactions when used to-
gether are fragile, leading to unreliable behavior by the prototype attempting
to use the several components.

Noticing the layers and components in software ecologies is to also no-
tice that it is complex. 211 This observation is not meant to imply that it is
more or less complex than other fields of technology but only to note that
complex systems have inherent propensities for operational difficulties to
arise from interactions among components in the system. Such difficulties
might or might not reach to undue experimentation within enablement when a
software patent is involved, but patent law should not sweep them from the
inquiry.

B. Enablement

The enablement implications for these observations about generators of
unpredictable behavior in software depend on two primary considerations.
First, whether the unpredictability attaches to the prototype phase or to the
product phase. Second, whether the purpose of the unpredictability doctrine
is to account for things in nature, to account for things in human-constructed
technological infrastructure, or to accommodate both.

To focus on the second consideration, a computer operating system is a
technological infrastructure to manipulate encoded information. To the ex-
tent it does not work perfectly, it is a failure of human design and implemen-
tation, not a failure in understanding how some mechanism within nature
works. An exception to this assertion is when computer failures arise from
the underlying hardware due to malfunctions in that hardware from influences

212
not understood within electrical engineering.

208. See Larus & Hunt, supra note 201, at 76-78.
209. See Vetter, supra note 126, at 578-81.
210. See id at 569 n.12.
211. Sallie Henry & Calvin Selig, Predicting Source-Code Complexity at the

Design Stage, IEEE SOFTWARE, Mar. 1990, at 36, 36-37 (discussing software
complexity metrics).

212. A famous hardware problem in the history of computing was Intel's faulty
Pentium processor in the middle 1990s. See generally Tim Coe, et al., Computational
Aspects of the Pentium Affair, 2 IEEE COMPUTATIONAL SCI. & ENGINEERING 18
(1995).

806 [Vol. 76

44

Missouri Law Review, Vol. 76, Iss. 3 [2011], Art. 8

https://scholarship.law.missouri.edu/mlr/vol76/iss3/8

UNPREDICTABILITY AND THE SOFTWARE ARTS

Putting that narrow exception aside, a different way to pose the second
consideration is to remove it from software. When the tools needed to make
and use what a patent claim recites, as well as the elements of the claim, are
human-made items that are fragile, unreliable, and unpredictable,. alone or in
combination, does the unpredictability doctrine still attach? The answer
seems to be "yes." For example, in Atlas Powder Co. v. E.I. du Pont de
Nemours & Co., some elements of the claim are items straight from nature,
such as water.2 13 But others are human-made ingredients.214 The way the
ingredients interacted was a function of natural laws, but chemistry provided
a model 215 to give some predictability about how to influence those interac-
tions. Thus, the enablement proposition in Atlas Powder seems to consider
potential unpredictability from both nature and human-made technological
infrastructure (certain ingredients). On the other hand, the human-made items
in Atlas Powder depend on natural principles for their operation even if not
existing in nature. This situation is different from a software invention that

216operates within encoding constructs derived from human thought.
While a Norden model effort curve perspective suggests a

non-categorical approach to unpredictability within undue experimentation,
another conmenter places this suggestion within a proposed alternative
framework for the PHOSITA:

To be useful to the PHOSITA determination, the fact-finder should
not simply categorize whole disciplines as predictable or unpre-
dictable. Courts should recognize that the level of predictability in
an art can change over time. A fact-finder should examine the pre-
dictability of the particular field of invention on a case-by-case ba-

217
sis.

213. 750 F.2d 1569, 1572 (Fed. Cir. 1984).
214. Id. at 1571-72.
215. The model was a "basic principle of emulsion chemistry" called "Bancroft's

Rule." Id. at 1576.
216. Another possible approach to unpredictability that would exclude software

unpredictability that is not hardware derived is to say that unpredictability only
applies from one or both of these aspects: nature itself, or human-made tools relying
on natural phenomena. This approach is perhaps suggested by the doctrinal origins of
the unpredictable arts in fields such as chemistry. This approach, however, is
narrower than that suggested by the Norden model, which views unpredictability as
something that increases learning effort. Also, at some level, this discussion becomes
metaphysical as to what definition one takes for "nature."

217. Joseph P. Meara, Just Who Is the Person Having Ordinary Skill in the Art?
Patent Law's Mysterious Personage, 77 WASH. L. REV. 267, 290-94 (2002)
(proposing a new standard for the court to use to understand how a PHOSITA thinks
about a technology problem, including predictability of the art as a factor, toward
emphasizing problem solving ability rather than credentials).

2011] 807

45

Vetter: Vetter: Patent Law's Unpredictability Doctrine

Published by University of Missouri School of Law Scholarship Repository, 2011

MTSSOURI LAW REVIEW

This call for a fine-grained approach might have benefitted patent law
related to software if it had been heeded. By the time of Mr. Meara's article
with the above-given quote, State Street Bank & Trust Co. v. Signature Fi-
nancial Group, Inc. was more than four years in the past.2 18 Thus,
State Street's influence of increasing the domain of patents over information
technology was being felt doctrinally and with an upswing in the number of

219
software patent applications.

The problem, however, is that patent law made no corresponding reas-
sessment of the disclosure doctrines for software patents, even with a special-
ized appellate court as the primary influence over patent law. After State
Street, not only were there more software patents, but they carried broader
claims and reached to more areas of human endeavor. 220 The broader the
claim, the greater the potential genus defined by the claim. This breadth
leads to greater potential for lack of enablement of the genus. But the contin-
uing meme analogizing software to electrical circuits or other electrical engi-
neering concepts dampened the more nuanced response suggested by Mr.
Meara's article.

Recalibrating the enablement disclosure doctrine in light of increased
software patent claim breadth would involve recognizing several related con-
siderations. First, that claims evolved to increasingly broad scope for soft-
ware patents. Second, that software, software ecologies, and information
technology became more complex, both within a single computer and among
computers as networking became ubiquitous in wired and wireless forms.
Third, that programming and software development had changed since the
time of invention for technologies such as those involved in Northern Tele-
com Inc. v. Datapoint Corp.

The temporal dimension of the third consideration is stark. The filing
date of the patent at issue in Northern Telecom is in July 1971, forty years
past the time of writing this article. 221 As recently as 2003, a Federal Circuit
judge cited Northern Telecom for the proposition that source code disclosure

218. 149 F.3d 1368 (Fed Cir. 1998), abrogated by In re Bilski, 545 F.3d 943 (Fed.
Cir. 2008) (en banc), aff'd sub nom. Bilski v. Kappos, 130 S. Ct. 3218 (2010). There
was at one point in patent law an exception to eligible subject matter called "business
method[s]," where the claims covered items such as an accounting method or perhaps
a method of demonstrating a product or a method of compensating a manager. Id. at
1375. However, this exception no longer exists. Id; see also Bilski v. Kappos, 130
S. Ct. 3218 (2010).

219. Michael J. Meurer, Business Method Patents and Patent Floods, 8 WASH. U.
J.L. & POL'Y 309, 310-13, 320-24 (2002).

220. Cohen & Lemley, supra, note 47, at 9-14 (discussing how, even before the
State Street case, software became easier to claim due to decisions by the U.S. Patent
and Trademark Office).

221. U.S. Patent No. 3,760,375 (filed July 26, 1971).

[Vol. 76808

46

Missouri Law Review, Vol. 76, Iss. 3 [2011], Art. 8

https://scholarship.law.missouri.edu/mlr/vol76/iss3/8

UNPREDICTABILITY AND THE SOFTWARE ARTS

was not required for software patents.222 This pattern shows that disclosure
doctrines, particularly enablement, are tied to a technological past that cannot
reflect the current realities of developing software nor reflect the complex
ecology that is computing. The Northern Telecom opinion recognizes that
disclosure will "vary according to the nature of the invention, the role of the
program in carrying it out, and the complexity of the contemplated program-
ming, all from the viewpoint of the skilled programmer.'223 However, the
court stated with respect to the technology of that case that "[t]he claimed
invention of the '375 patent is not in the details of the program writing ...
experts for both sides testified that an experienced programmer could, with-
out unreasonable effort, write a program to carry out the invention of the '375
patent." 224

The software for the claimed device in Northern Telecom was more akin
to electrical engineering concepts than many of the software patent claims
flooding into the U.S. patent system after State Street. To further emphasize
this temporal incongruence, consider the actual device depicted in the '375
patent, given in Figure 6 below.

222. Moba, B.V. v. Diamond Automation, Inc., 325 F.3d 1306, 1325 (Fed. Cir.
2003) (Rader, J., concurring):

This [Lilly doctrine] burdensome disclosure standard is tantamount to re-
quiring disclosure, for a new software invention, of the entire source code,
symbol by symbol, including all source code permutations that would not
alter the function of the software. Ironically, the Federal Circuit has ex-
pressly rejected such a requirement for software inventions, but apparently
enforces the requirement for biotechnology.

Id.
223. N. Telecom, Inc. v. Datapoint Corp., 908 F.2d 931, 941 (Fed. Cir. 1990).
224. Id.

2011] 809

47

Vetter: Vetter: Patent Law's Unpredictability Doctrine

Published by University of Missouri School of Law Scholarship Repository, 2011

MISSOURI LAW REVIEW

Figure 6 - Fig. 1 of the '375 patent - Data Entry Terminal

The ancientness of the device in Figure 6 above demonstrates the stale-
ness of disclosure doctrines as applied to software patents. Is this technology
really an appropriate baseline analogy to use for claims of the sort reviewed
in relation to Figure 4 above, discussing the '257 patent for a "method for
scheduling the receipt of desired movies"? 225

Particularly as to enablement, undue experimentation, and unpredictabil-
ity, the considerations that the Northern Telecom opinion outlines, that dis-
closure requirements should vary among software patents, should be reinvig-
orated. The Norden model effort perspective amplifies this suggestion. One
might ask why enablement and undue experimentation went stale as a doc-
trine while patent law was under the purview of a specialized court of appeals
and while computer technology was advancing by leaps and bounds. Perhaps
patent law should not expect that the specialization in the court would extend
to specialization in following the technical disciplines that fit within the do-
main of patents. Perhaps litigants rarely emphasize undue experimentation in
challenging enablement given the strong early tone of the law in cases such as
Northern Telecom. Perhaps the difficulty of making an enablement case
while also arguing obviousness as a patent litigation defendant influences
litigants to emphasize the obviousness issue, where hindsight might help in-
fluence the factfinder in favor of the defendant seeking invalidity of the
claim.226 Perhaps the experts willing to be involved in the cases are not prone

225. U.S. Patent No. 5,758,257 (filed Nov. 29, 1994).
226. See generally Gregory N. Mandel, Another Missed Opportunity: The

Supreme Court's Failure to Define Nonobviousness or Combat Hindsight Bias in
KSR v. Teleflex, 12 LEWIS & CLARK L. REV. 323 (2008) (discussing non-obviousness
and hindsight within that doctrine). Hindsight could also have an impact with
unpredictability because enablement is evaluated as of the time the patent claim is

810 [Vol. 76

48

Missouri Law Review, Vol. 76, Iss. 3 [2011], Art. 8

https://scholarship.law.missouri.edu/mlr/vol76/iss3/8

UNPREDICTABILITY AND THE SOFTWARE ARTS

to see unpredictability in the world of software despite academic literature
suggesting otherwise. Finally, perhaps most unpredictability is found in mak-
ing a product, not a prototype, and thus does not apply as a matter of enable-
ment doctrine.

The court in Northern Telecom227 approvingly quotes a passage from In
re Sherwood that recognizes, in its first sentence, that software disclosure and
software programming exist along a continuum.228 But the second sentence
of the quoted passage equates programming to creating a "mathematical
methodology to bridge the gap between the [input and output]." 229 This con-
ception might belong in a 1970s sense of software development but not to
present times. The reference to "mathematical methodology" suggests a false
analogy to more predictable information technology niches, such as many
areas of electrical engineering.

The unpredictable technology doctrine perhaps was never meant to op-
erate categorically. Its usefulness as a judicial rubric for close cases with
expert equipoise seems understandable but not optimal for software given the
growth and change in it as a technology and the growth of software patents as
a domain within patent law. While one disadvantage of the judicial process is
that courts might miss such developments, an advantage of a specialized ap-
pellate court is that when they are noticed change can occur more rapidly.
Into this fray, this Article suggests resort to the perspectives of the Norden
model to understand unpredictability and undue experimentation from the
perspective of learning effort. This approach dampens the easy slide into
categorical perspectives for unpredictability.

Beyond enablement, unpredictability can influence written description
and obviousness. The Norden model perspective does not suggest using un-
predictability within written description as a claim-defining doctrine. While
unpredictability has a place in the doctrinal structure of obviousness, under-
standing this fit is not the focus of this Article, and the fit is imperfect from

filed. See HARMON, supra note 41, at 197. As the enablement and unpredictability
assessment moves further away from the time of filing, hindsight would likely lead a
factfinder to see less unpredictability, particularly if the technology matures and
strengthens.

227. N. Telecom, 908 F.2d at 941 (quoting In re Sherwood, 613 F.2d 809, 816-17
(C.C.P.A. 1980)).

228. In re Sherwood, 613 F.2d at 816-17. The full passage used by the court in
Northern Telecom from In re Sherwood is as follows:

In general, writing a computer program may be a task requiring the most
sublime of the inventive faculty or it may require only the droning use of
clerical skill. The difference between the two extremes lies in the creation
of mathematical methodology to bridge the gap between the information
one starts with ("the input") and the information that is desired ("the out-
put").

N. Telecom, 908 F.2d at 941 (quoting In re Sherwood, 613 F.2d at 816-17).
229. N. Telecom, 908 F.2d at 941 (quoting In re Sherwood, 613 F.2d at 816-17).

8112011]

49

Vetter: Vetter: Patent Law's Unpredictability Doctrine

Published by University of Missouri School of Law Scholarship Repository, 2011

MISSOURILAWREVIEW

the Norden learning effort perspective. 230 But making and using without
undue experimentation, as the core of enablement, resonates with the learning
effort perspective and signals a need for reconsideration of the unpredictable
technology doctrine in the software arts.

V. CONCLUSION

Disclosure is an important part of the policy trade-off to grant patent
rights. To be meaningful, disclosure requires legal standards to measure
when it is sufficient. Enablement measures disclosure sufficiency, but its
undue experimentation proviso allows disclosure to be less than perfect.
Whether a technology niche is unpredictable is an important consideration in
whether experimentation is undue. All of these concepts are understood from
the perspective of the Norden model, which expressed phases of research and
development as effort curves over time. For example, enablement, in the
Norden model, measures whether information generated in the design phase
and disclosed in a patent is sufficient to build a prototype without undue ef-
fort. With that approach and the insight that information can substitute for
learning effort, the Norden model suggests new perspectives for enablement
and other doctrines in patent law. The model arose from the study of research
and development, it is a staple in software as a management and estimating
theory, and this Article applies it specifically to software patents. Thus, the
general insights from the model as to enablement are acute for software be-
cause the trend has been to lump software into a macro-characterization as a
predictable technology. Changes over the last several decades in software
patent eligibility, claim scope, and software technology belie that approach.
The learning effort perspective suggests that unpredictability should be a
fine-grained approach, both generally and particularly as to software technol-
ogy. Under a flexible approach to unpredictability, courts hopefully will ap-
ply the doctrine to more areas within the software and information technology
ecologies. The great breadth of these technologies and their rapid develop-
ment suggest that there are niches or subfields where patent law should give
unpredictability greater consideration than the doctrine has generally allowed.

230. An attempt to map obviousness to the Norden model would need to equate
the design information to the prior art, and the invention to the prototype. However,
the correspondence is less than enablement because there is some sense that
obviousness involves more than mere learning effort. Unpredictability, however, has
multiple places where it might influence the obviousness inquiry: assessing the level
of skill of the artisan; the baseline question - is the claim as a whole obvious?; in
conjunction with the reasonable expectation of success component of the now
disfavored teaching, suggestion and motivation (TSM) test; and as a secondary or
objective consideration.

812 [Vol. 76

50

Missouri Law Review, Vol. 76, Iss. 3 [2011], Art. 8

https://scholarship.law.missouri.edu/mlr/vol76/iss3/8

